A Bayesian Analysis of Hierarchical Mixtures with Application to Clustering Fingerprints
نویسندگان
چکیده
Hierarchical mixture models arise naturally for clustering a heterogeneous population of objects where observations made on each object follow a standard mixture density. Hierarchical mixtures utilize complementary aspects of mixtures at different levels of the hierarchy. At the first (top) level, the mixture is used to perform clustering of the objects, while at the second level, nested mixture models are used as flexible representations of distributions of observables from each object. Inference for hierarchical mixtures is more challenging since the number of unknown mixture components arise in both the first and second levels of the hierarchy. In this paper, a Bayesian approach based on Reversible Jump Markov Chain Monte Carlo methodology is developed for the inference of all unknown parameters of hierarchical mixtures. Our methodology is then applied to the clustering of fingerprint images and used to assess the variability of quantities which are functions of the second level mixtures.
منابع مشابه
به کارگیری روشهای خوشهبندی در ریزآرایه DNA
Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملRevisiting k-means: New Algorithms via Bayesian Nonparametrics
Bayesian models offer great flexibility for clustering applications—Bayesian nonparametrics can be used for modeling infinite mixtures, and hierarchical Bayesian models can be utilized for sharing clusters across multiple data sets. For the most part, such flexibility is lacking in classical clustering methods such as k-means. In this paper, we revisit the k-means clustering algorithm from a Ba...
متن کاملBayesian Rose Trees
Hierarchical structure is ubiquitous in data across many domains. There are many hierarchical clustering methods, frequently used by domain experts, which strive to discover this structure. However, most of these methods limit discoverable hierarchies to those with binary branching structure. This limitation, while computationally convenient, is often undesirable. In this paper we explore a Bay...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کامل